skip to main content


Search for: All records

Creators/Authors contains: "Myers, Deborah J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Abstract

    We elucidate the structural evolution of CoN4sites during thermal activation by developing a zeolitic imidazolate framework (ZIF)‐8‐derived carbon host as an ideal model for Co2+ion adsorption. Subsequent in situ X‐ray absorption spectroscopy analysis can dynamically track the conversion from inactive Co−OH and Co−O species into active CoN4sites. The critical transition occurs at 700 °C and becomes optimal at 900 °C, generating the highest intrinsic activity and four‐electron selectivity for the oxygen reduction reaction (ORR). DFT calculations elucidate that the ORR is kinetically favored by the thermal‐induced compressive strain of Co−N bonds in CoN4active sites formed at 900 °C. Further, we developed a two‐step (i.e., Co ion doping and adsorption) Co‐N‐C catalyst with increased CoN4site density and optimized porosity for mass transport, and demonstrated its outstanding fuel cell performance and durability.

     
    more » « less
  4. Abstract

    We elucidate the structural evolution of CoN4sites during thermal activation by developing a zeolitic imidazolate framework (ZIF)‐8‐derived carbon host as an ideal model for Co2+ion adsorption. Subsequent in situ X‐ray absorption spectroscopy analysis can dynamically track the conversion from inactive Co−OH and Co−O species into active CoN4sites. The critical transition occurs at 700 °C and becomes optimal at 900 °C, generating the highest intrinsic activity and four‐electron selectivity for the oxygen reduction reaction (ORR). DFT calculations elucidate that the ORR is kinetically favored by the thermal‐induced compressive strain of Co−N bonds in CoN4active sites formed at 900 °C. Further, we developed a two‐step (i.e., Co ion doping and adsorption) Co‐N‐C catalyst with increased CoN4site density and optimized porosity for mass transport, and demonstrated its outstanding fuel cell performance and durability.

     
    more » « less